h-Vectors of matroids and logarithmic concavity
نویسنده
چکیده
Article history: Received 11 November 2012 Accepted 4 November 2014 Available online 13 November 2014 Communicated by Ezra Miller MSC: 05B35 52C35
منابع مشابه
Matroids and log-concavity
We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...
متن کاملRemarks on One Combinatorial Application of the Aleksandrov–fenchel Inequalities
In 1981, Stanley applied the Aleksandrov–Fenchel Inequalities to prove a logarithmic concavity theorem for regular matroids. Using ideas from electrical network theory we prove a generalization of this for the wider class of matroids with the “half–plane property”. Then we explore a nest of inequalities for weighted basis–generating polynomials that are related to these ideas. As a first result...
متن کاملMatroid Inequalities from Electrical Network Theory
In 1981, Stanley applied the Aleksandrov–Fenchel Inequalities to prove a logarithmic concavity theorem for regular matroids. Using ideas from electrical network theory we prove a generalization of this for the wider class of matroids with the “half–plane property”. Then we explore a nest of inequalities for weighted basis– generating polynomials that are related to these ideas. As a first resul...
متن کاملLog-concavity of characteristic polynomials and the Bergman fan of matroids
In a recent paper, the first author proved the log-concavity of the coefficients of the characteristic polynomial of a matroid realizable over a field of characteristic 0, answering a long-standing conjecture of Read in graph theory. We extend the proof to all realizable matroids, making progress towards a more general conjecture of Rota–Heron–Welsh. Our proof follows from an identification of ...
متن کاملHodge Theory of Matroids
Introduction Logarithmic concavity is a property of a sequence of real numbers, occurring throughout algebraic geometry, convex geometry, and combinatorics. A sequence of positive numbers a0,... ,ad is log-concave if a2 i ≥ ai−1ai+1 for all i. This means that the logarithms, log(ai), form a concave sequence. The condition implies unimodality of the sequence (ai), a property easier to visualize:...
متن کامل